Subaru PFS Cosmology

Tomomi Sunayama (U. Arizona): On behalf of PFS Cosmology WG

Timeline of spectroscopic galaxy surveys

* Stage-III Dark Energy Experiments (BOSS, eBOSS) are finished and now DESI and Subaru PFS will start taking data...

Galaxy Map: Spectroscopic Survey Design

PFS Roman

DESI

Euclid

The growing PFS Collaboration

- * PI: Hitoshi Murayama (Kavli IPMU/UC Berkeley)
- * Project Office: Kavli IPMU, Kashiwa, Japan
- Technical work: Princeton, JHU, ASIAA (Taiwan), Caltech, LNA (Brazil), LAM (France), Nat'l Astronomical Observatories of Japan (NAOJ)

Subaru Prime Focus Spectrograph (PFS)

- * 8.2m diameter telescope on Maunakea, Hawaii (median seeing 0.6 arcsec)
- Fiber-fed spectrograph fed by Subaru wide-field corrector
- 2400 fibers over 1.25 sq deg FOV at prime focus
- Optical-NIR coverage from 380nm-1260nm
- Facility instrument for Subaru Telescope (anyone with Subaru access can apply)
- ~4x greater spectroscopic efficiency than DESI (N_{fiber} x Mirror Area / D_{fiber}²)

Subaru Prime Focus Spectrograph (PFS)

- 8.2m diameter telescope on Maunakea, Hawaii (median seeing 0.6 arcsec)
- Fiber-fed spectrograph fed by Subaru wide-field corrector
- 2400 fibers over 1.2 sq deg FOV at prime focus
- Optical-NIR coverage from 380nm-1260nm
- Facility instrument for Subaru Telescope (anyone with Subaru access can apply)
- ~4x greater spectroscopic efficiency than DESI (N_{fiber} x Mirror Area / D_{fiber}²)

Subaru Prime Focus Spectrograph (PFS)

- 8.2m diameter telescope on Maunakea, Hawaii (median seeing 0.6 arcsec)
- Fiber-fed spectrograph fed by Subaru wide-field corrector
- 2400 fibers over 1.25 sq deg FOV at prime focus
- Optical-NIR coverage from 380nm-1260nm: NIR=940-1260nm
- Facility instrument for Subaru
 Telescope (anyone with Subaru access can apply)
- ~4x greater spectroscopic efficiency than DESI (N_{fiber} x Mirror Area / D_{fiber}²)

Complementarity with DESI-II/Spec-S5

 DESI is observing ELGs at z<1.6 and DESI-II is planning to observe LBGs at z>2.5

Complementarity with DESI-II/Spec-S5

* PFS can bridge the gap between DESI and DESI-II with comparable constraining power!

Scientific Themes of PFS Survey

Cosmology

Galaxy Archeology Galaxy Evolution

Scientific Themes of PFS Survey

Cosmology

Nature of Dark EnergySum of Neutrino Mass

Test Theory of Gravity

 Nature of Dark Matter Galaxy Archeology

Assembly History
 Galaxy
 of Galaxies
 Evolution

Scientific Themes of PFS

	Testing ACDM	Assembly history of galaxies	Importance of IGM
GA CO	 Nature & role of neutrinos Expansion rate via BAO up to z=2.4 PFS+HSC tests of GR Curvature of space: Ω_K Primordial power spectrum Nature of DM (dSphs) 	 PFS+HSC galaxy association Absorption probes with PFS/SDSS QSOs around PFS/HSC host galaxies Stellar kinematics and chemical abundances – MW & M31 assembly history 	 Search for emission from stacked spectra dSph as relic probe of reionization feedback Past massive star IMF from element abundances
GЕ	Search of MW dark haloSmall-scale tests of structure growth	 Halo-galaxy connection: M_*/M_{halo} Outflows & inflows of gas Environment-dependent evolution 	 Physics of cosmic reionization via LAEs & 21cm studies Tomography of gas & DM

Cosmology survey (~1400 sq. degs.): ~4M emission-line galaxy spectra Galactic Archaeology: stars in dSphs, streams, and disk in MW and M31 Galaxy survey (~15 sq. degs.): ~a few 10⁵ high S/N galaxy spectra Target selection is based on the HSC data

From PFS-SSP proposal

Survey Design of PFS Cosmology Program

- * Accurate and robust cosmological constraints using the single tracer (4 million [OII] emission line galaxies) to map evolution of the large-scale structure of the Universe in a wide range of redshifts, 0.6 < z < 2.4, over $1200 deg^2$
- Other galaxy surveys only go to z=1.6 (DESI) and z=2 (Euclid), meaning 2<z<2.4 is a unique territory of PFS

Discovery Space: galaxy surveys are trying to explore...

* Why do we spend time and money for these large galaxy surveys?

Discovery Space: galaxy surveys are trying to explore...

* Why do we spend time and money for these large galaxy surveys?

Overview

- * What is Subaru Prime Focus Spectrograph (PFS) Survey?
 - PFS Instrument / Collaboration
 - The strength and uniqueness of PFS
 - Scientific Goals from three programs
- * What are we trying to do in the cosmology program?
 - Constraining sum of neutrino mass
 - Measuring Dark Energy
 - Testing theory of gravity
- * Where can we do to constrain DM models?

Overview

- * What is Subaru Prime Focus Spectrograph (PFS) Survey?
 - PFS Instrument / Collaboration
 - The strength and uniqueness of PFS
 - Scientific Goals from three programs
- * What are we trying to do in the cosmology program?
 - ★ Constraining sum of neutrino mass → High number density of ELGs
 - ★ Measuring Dark Energy → Wide redshift range
 - ★ Testing theory of gravity → Synergy with Subaru HSC survey
- * Where can we do to constrain DM models?

Correlation Functions: Statistical tool to quantify galaxy distribution

* Galaxy correlation functions measure an excess probability (relative to Poisson) of galaxy pairs separated by distance r.

$$dP = n^{2}(1 + \xi(r))dV_{1}dV_{2}$$

$$\xi(r) = \int \frac{d^{3}k}{(2\pi)^{3}}P(k)e^{ik\cdot r}$$

Forrelation
Function "Power Spectrum"

* If the density field is a random Gaussian, it can be fully characterized by the correlation functions.

PFS Cosmology program will explore...

* How well can we measure the sum of neutrino mass?

Neutrino Mass Hierarchy

$\sum m_{\nu} = 0.1 \text{eV}$ is a key to test the hierarchy

- Deciding the mass hierarchy sets a concrete target for the neutrino-less double
 beta decay experiments
- Can test whether
 neutrinos are Dirac or
 Majorana

What does neutrino do on large scale structure?

* Neutrinos decoupled when they were still relativistic, hence they wiped out structure on small scales

Without Neutrinos

With Neutrinos

Agarwal&Feldman 2010

What does neutrino do on clustering of galaxies?

- Neutrinos suppress power spectrum (clustering of galaxies)
- * PFS can achieve $\sigma(\Sigma m_{\nu}) = 0.02 \text{eV!}$

High-number density=can push to smaller scales

- PFS Cosmology program keep the high-number density at 0.6<z<2.4, which enables us to use small scale clustering.
- * Going to smaller scales (k=0.5h/Mpc) can improve the neutrino mass constraint by 30%

Implication on Ultra-light DM

 Ultra-light DM also suppresses power spectra on small scales due to the macroscopic de Broglie wavelengths of ultra-light DM

Current constraints on axions

 Constraints are from Planck and BOSS for various axion masses

Rogers+2023

PFS Cosmology program will explore...

* What can we learn about Dark Energy?

PFS can measure Dark Energy...

- * $\Omega_{\text{DE}}(z)$ to about 7% accuracy in each redshift bin
- * We can test the evolution of the Universe with a single tracer!

Discovery Potential: Time Evolving Dark Energy

* There is a significant theoretical motivation for dark energy potentials with periodic modulations.

Where are we now? Concordance Cosmology?

Improvements in statistical precision reveal tensions in cosmology

Clumpiness of the density fluctuation

Evidence for suppression of structure growth?

Constraints on growth of structure from PFS

 We can constrain S₈ comparable to ACT CMB lensing measurement and growth rate of structure much more precisely than any existed measurements.

Ultra-light axions and the S_8 tension

- Axions can be an explanation to the S₈ tension?
- * Ω_a and S_8 are degenerate

Rogers+2023

Testing theory of gravity: synergy with HSC

- Combining galaxy lensing from HSC and clustering from PFS ca be a powerful probe to test theory of gravity
- Recently, the review paper (2212.09094) is published (led by Dr. Arai, Prof. Yokoyama and Prof. Miyatake at Nagoya University / KMI)

Summary

- Subaru PFS Cosmology program is unique to have a wide redshift range, high number density of ELGs, and having a synergy with Subaru HSC survey.
- * PFS Cosmology program will measure the sum of neutrino mass with $\sigma(\Sigma m_{\nu}) = 0.02 \text{ev}$, which will enable us to distinguish the mass hierarchy of neutrino.
- * High number density of ELGs enables us to measure power spectra on small scales.
- Observing ELGs at z=2-2.4 is a unique strength of PFS cosmology program and enables us to trace the redshift evolution of growth of structure and dark energy density

PFS is supported by ...

* Without all these people, Subaru PFS will not happen and each person greatly contributes and push the project moving forward!

Prof. Naoyuki Tamura (Kavli IPMU)

Yabe

