
  

The classical field approximation for 
Ultra Light Dark Matter

Andrew Eberhardt [Kavli IPMU]
andrew.eberhardt@ipmu.jp

Kashiwa DM 2023
Dec, 5th 2023

arxiv.2310.07119

https://arxiv.org/pdf/2310.07119.pdf


   2

Ultra light dark matter



   3

Ultra light dark matter

Lin arxiv 1904.07915



   4

Ultra light dark matter
● At the lowest masses dark matter manifests wave-like 

phenomena on astrophysical scales



   5

Ultra light dark matter
● At the lowest masses dark matter manifests wave-like 

phenomena on astrophysical scales
● Interference patterns

Density fields for different 
particle masses



   6

Ultra light dark matter
● At the lowest masses dark matter manifests wave-like 

phenomena on astrophysical scales
● Interference patterns

Schive et al (Nature 2014)
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Ultra light dark matter
● At the lowest masses dark matter manifests wave-like 

phenomena on astrophysical scales
● Interference patterns
● “Quantum” pressure

Gravitational collapse in 
1D
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Ultra light dark matter
● At the lowest masses dark matter manifests wave-like 

phenomena on astrophysical scales
● Interference patterns
● “Quantum” pressure
● Granular density patterns

Typical halo density

Gosenca [,Eberhardt] et al., PRD (2023)
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Ultra light dark matter
● At the lowest masses dark matter manifests wave-like 

phenomena on astrophysical scales
● Gives a rich phenomenology of constraints

Image credit: Kier Rogers

https://keirkwame.github.io/DM_limits/
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Ultra light dark matter
● Most ULDM constraints rely on the predictions of classical 

field theory
● Requires accuracy of classical approximation of a wide 

range of scales

Understanding these simulations is essential to 
understanding the model and its constraints
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Classical approximation
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● Classical field theory is an approximation of 
quantum field theory replacing operators with 
numbers 

● A classical field places a number at every point 
in space

● The quantum field places a probability 
distribution at each point

● If the distribution is tightly peaked around the 
classical value then we can approximate the 
distribution using this number 

Classical approximation
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● The classical field approximation is usually 
motivated in two ways 

– The misalignment mechanism produces a 
quantum coherent state (specifies a 
distribution shape)

Coherent state

Number eigenstate

Classical approximation
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● The classical field approximation is usually 
motivated in two ways 

– The misalignment mechanism produces a 
quantum coherent state

– Occupation numbers are very large 
● Both conditions are necessary for the classical 

field equations to make accurate predictions        
[Eberhardt et al (PRD 2021)]

Classical approximation

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.105.036012
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● In the absence of nonlinearities we 
would expect this description to survive 

Classical approximation



   35

● In the absence of nonlinearities we 
would expect this description to survive

● Nonlinearities introduce quantum 
corrections on some timescale 

Classical approximation
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● Which case is relevant for the simulation of ultra light dark matter? 

Weakly nonlinear Strongly nonlinear

Central Questions
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contain all the important components of 
this problem
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Let’s look at an analogous system that 
contain all the important components of 
this problem

https://en.wikipedia.org/wiki/Schr%C3%B6dinger%27s_cat#/media/File:Schrodingers_cat.svg



   39

● Let’s look at an analogous system 
that contain all the important 
components of this problem

Cs

Schrödinger’s Cat



   40

● The system starts in a state well 
described by classical mechanics

Cs

Schrödinger’s Cat



   41

● The system starts in a state well 
described by classical mechanics

● On some timescale nonlinear 
interactions will create a system 
poorly described by classical 
mechanics

Cs

Schrödinger’s Cat



   42

● The system starts in a state well 
described by classical mechanics

● On some timescale nonlinear 
interactions will create a system 
poorly described by classical 
mechanics

● On some timescale environmental 
interactions (“observers”) will send 
this system to its pointer states

Cs

50% 50%

Schrödinger’s Cat



   43

● The system starts in a state well 
described by classical mechanics

● On some timescale nonlinear 
interactions will create a system 
poorly described by classical 
mechanics

● On some timescale environmental 
interactions (“observers”) will send 
this system to its pointer states

50% 50%

Pointer states

Schrödinger’s Cat
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Approaches to answers
● Previous approaches generally 

separate into two groups

– Order of magnitude estimates
– Simulations of small quantum 

“number eigenstates” 

● We directly simulate the evolution of 
quantum corrections for coherent 
states on a variety of scales

● Made difficult by the scaling of 
Quantum Hilbert spaces Eberhardt et al., PRD (Feb 2022)

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.105.036012
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“quantum phase space”

Methods: truncated Wigner approximation
Large Systems:
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● For large systems we want to move to 
“quantum phase space”

● This is done using the Weyl symbol of 
the quantum state, the Wigner 
function

Methods: truncated Wigner approximation
Large Systems:

Quantum state: Wigner function:
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]

f (ψ, ψ∗)

Go from a vector in Hilbert space 
to a probability functional on field 
configurations
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● For large systems we want to move to 
“quantum phase space”

● This is done using the Weyl symbol of the 
quantum state, the Wigner function

● Rewrite the Von Neumann equations in this 
space

● Approximate a Moyal bracket with a Poisson 
bracket

● Approximate Wigner function as ensemble of 
classical fields drawn from Wigner distribution

● Resulting evolution is each stream evolves 
classically and independent of the others, 
resulting in a highly parallel algorithm

Methods: truncated Wigner approximation
Large Systems:

CPU

CPU
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● The truncated Wigner approximation has a lot of good properties:

Methods: truncated Wigner approximation
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● The truncated Wigner approximation has a lot of good properties:

– Good scaling with problem size
– Highly parallelizable
– Accurate for a long time

Methods: truncated Wigner approximation
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● We can also model decoherence
● We start by defining a system which includes an environment and dark matter 

component
● We then model the dark matter-environment interaction
● Use this Hamiltonian and a joint Wigner function to describe the evolution of the 

system

Methods: truncated Wigner approximation

Test particle 
phase space 
position initially 
localized at 
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● We can also model decoherence
● We start by defining a system which includes an environment and dark matter 

component
● We then model the dark matter-environment interaction
● Use this Hamiltonian and a joint Wigner function to describe the evolution of the 

system
● Because we know luminous matter has well defined phase space trajectories we 

know that the decoherence rate must be at least as fast as the test particle 
enters into a macroscopic super position in phase space

Methods: truncated Wigner approximation
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Results
● We quantify the size of corrections using a parameter Q which measures how 

the average spread in the wavefunction compares to the mean value  
● Q goes from 0 to 1 in all systems
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Results
● We quantify the size of corrections using a parameter Q which measures how 

the average spread in the wavefunction compares to the mean value
● Not a unique choice (or only one we looked at) but reliable indicator of 

differences between quantum and classical evolutions  
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Results
● First analysis we performed was to 

test how long it takes for Q to grow 
to a certain size (this defined the 
quantum breaktime) as a function 
of the total number of particles 
keeping the mean field evolution 
fixed 101

ntot
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2

3

4

5

t b
r

∝ 1.33 log(ntot)

Full quantum
simulations
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Results
● First analysis we performed was to 

test how long it takes for Q to grow to 
a certain size (this defined the 
quantum breaktime) as a function of 
the total number of particles keeping 
the mean field evolution fixed 

● See a logarithmic enhancement in 
the breaktime with particle number

● Well known prediction for systems 
that exhibit classical chaos

● Straightforward to understand in the 
truncated Wigner context
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Results
● Small quantum perturbations in initial conditions spread exponentially
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Results
● Second analysis is to look at how Q grows
● Staged growth

– Initial quadratic growth
– Exponential growth during collapse
– Powerlaw after collapse

● Any powerlaw growth is too slow but 
exponential growth may be a problem for the 
classical theory 
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Results
● How does behavior generalize to 3D systems?
● Used 3 test problems: collapse of a random field, stable collapsed object, 

merging of two collapsed objects 
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Results
● Results corroborate 1D expectations
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Results
● Results corroborate 1D expectations

– Nonlinear collapse/merging is exponential
– Powerlaw very early and post collapse
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Results
● What predictions do quantum corrections effect?  
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Results
● Leading order effect is to remove 

density fluctuations from interference
● Effects constraints that rely on the 

granularity of the density profile

– Heating of ultra faint dwarf stellar 
dispersions

– Constraints from gravitational 
lensing  

Power, et al. MNRAS 2023

Gravitational lensing

Stellar dispersions

https://inspirehep.net/literature/2635560
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Results
● Test decoherence by coupling our dark matter state to a test particle
● Over time the test particle will evolve in a super position on phase space
● This occurs at the same rate as quantum corrections are introduced  
● Unlike Schrodinger’s cat, both the quantum corrections and the decoherence 

are caused by the same thing, gravity
● Difficult to evolve into a state with large quantum corrections without also 

putting test particles into macroscopic super positions which we do not 
observe

● The decoherence time scale must be at least as fast as the nonlinear 
timescale
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Conclusions
● Quantum corrections:

–  grow exponentially in systems that are 
experience nonlinear growth (collapsing, 
merging, etc)

– Grow slowly in systems already 
collapsed systems  
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Conclusions
● Quantum corrections:

–  grow exponentially in systems that are experience nonlinear growth (collapsing, 
merging, etc)

– Grow slowly in systems already collapsed systems
● Corrections remove granular/interference structures from the density
● Decoherence occurs at least as fast as quantum corrections grow
● Small systems will be most effected by corrections but have the longest dynamical 

times
● Decoherence means states with large corrections are unlikely  
● Strong support that the predictions of the classical theory are accurate
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Questions
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Equations of motion for the truncated Wigner expansion [see Polkovnikov (Annals of Physics 2010)]

Extra slides: Truncated Wigner Approximation

If I approximate my Wigner function as an ensemble of streams:

Is the independent classical evolution:

The same as approximating the evolution of the Wigner function to this order?:

https://www.sciencedirect.com/science/article/pii/S0003491610000382?via%3Dihub
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Yes

Extra slides: Truncated Wigner Approximation
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● Looked at field number and number 
eigenstates

– Coherent states are the states 
associated with the misalignment 
mechanism

– Number state is immediately 
nonclassical

– Field number state would be interesting 
follow up

Extra slides: Other interactions/quantum states
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● Looked at contact interaction

– Found spreads wavefunction too slowly (powerlaw, cf. Kerr oscillator)

Extra slides: Other interactions/quantum states
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Extra slides: Other interactions/quantum states

Coherent state

Field number state
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