Liquid Xe purification in a large-scale dark matter search experiment XENONnT

Yoshino Kaminaga (the Univ. of Tokyo) for the XENON collaboration

II. XENONnT experiment I. What is Dark Matter (DM)? The large direct DM search experiment What we know about DM 😔 Underground laboratory in Gran Sasso, Italy \Rightarrow An unknown mass Using 8.5t of xenon (Xe) component is required! It could be a key to reveal the nature of the universe. The matter we understand ce (light years Dark Observed and predicted XENON10 | XENON100 | XENON1T | XENONnT rotation curves of the M33 galaxy matter Created by M. Leo, using E. Corbelli and P. Salucci, astro-ph/9909252, 1999 2019-2005-2007 2008-2016 2012-2018 27% 25kg 3200kg Xe 161kg 8500kg **DM** properties Dark energy Gravitationally interacting Main target: WIMPs **XENON** collaboration 68% Weakly Interacting Massive Particles It does not absorb, reflect, or emit light · A good candidate of DM, mass ~x100 of proton Stable for the age of the universe Compositions of our universe Very rare event (expected: ≤1 event/year)

III. Detector and Signals of XENONnT **Dual-phase Xe Time Projection Chamber**

GXe

LXe

- Liquid Xe; an excellent scintillator Online purification available S1 : Scintillation & S2 : Ionization signals • 3D positions of interaction points : $(\mathbf{x}, \mathbf{y}: S2 \text{ position}, \mathbf{z}: time_{S2}-time_{S1})$
- Particle identification : (S2/S1)_{NR} < (S2/S1)_{ER}

494 photomultiplier tubes arravs

Challenges of operating a dual-phase TPC

- Large mass & low background are required
- Reduce radioactive background
- Rn, Kr radioisotopes make background events
- \Rightarrow Removed by distillations
- Purification of large detector
- H₂O absorbs light (attenuates S1 and S2)
- ⇒ Removed by gas phase purification