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Flat rotation curves at the outer galactic radii are among the observational . 522?!5’5‘02.”53 credible / SPARC Data Selection: Rotation Curve Fits
evidence of dark matter (DM) on the galactic scale. The standard cold dark NEW intervals, and ~ : 10 « For many galaxies, the reduced chi-squared (y2) values obtained from the
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matter (CDM) model successfully explained the formation of the large-scale l ro.tatlon curv.es.flttlng were not rgpresentlng the fit qualities well, due to the
structures in the universe. However, many issues arise on the galactic scale — Bestfit valies, / 24 sample galaxies W'dde luncertamhes on the data points. Therefore, the BIC value was chosen for
(small-scale problems), such as the core-cusp problem, i.e., the discrepancy Literature | 7 credible model comparison.
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cuspy Navarro-Frenk-White (NFW) profile based on CDM simulations. This . Markov Chain Monte Carlo (MCMC) method in Python (the emcee package). e fits using the alo model are strongly penalized by the , probably
I had ' d irical DM densi file th Y o : due to the high complexity of the model. In this work, we used 5 free
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Another issue is the rotation curves diversity problem, i.e., the scatter in the . §|(ot = Bk 20077200 BIC=—2InL +kInN - The constraints on FDM particle mass of this work overlap with the results from
inner shape of rotation curves of galaxies of similar masses is much broader than constraint urkert V0, €200, Y ABIC = BIC,jrernative — BIChact Khelashvili et al. (2023) (mgpy = 10723 eV). There are some differences on the
predicted by CDM simulations. Vo00: DM velocity at Rygg, C200: DM concentration at Ry, R,00: radius at which the spherically averaged DM density FDM - Va0, M2z, @0, Y, 95% credible intervals for some overlapping galaxies, due to the additional free
One commonly proposed solution is to use alternative DM models, e.g., fuzzy reached 200p.i, Y.: stellar disk mass-to-light ratio, a: 7, /r,;, 8: uncertainty (up to 50%) of FDM halo-soliton mass SIDM Ty, 0o, Y. [ L: maximum likelihood, k: number of free parameters, ] parameters used in the latter work (distance and inclination of the galaxies).
dark matter and self-interacting dark matter. scaling relation, Ty: SIDM particles scattering rate, g,,: 1-D DM velocity dispersion N: number of data points -
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Broglie wavelength is in the order of ~1 kpc. e e

« Despite the remarkable fits, none of the galaxies in the sample
supports the FDM model.

« Based on the ABIC values, there are positive evidence and strong
evidence to reject the FDM model from 15 and 9 galaxies,
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* On the scale 1 < 1,45, quantum pressure i
provides stability against gravitational
collapse, forming a constant density
soliton core (~0.3 - 1.6 kpc) at the halo

« Bernal et al. (2018) fitted the rotation curves of 18 LSB galaxies and 6 NGC
galaxies (4 of them are from the SPARC catalog). They also found that the
constraints from each galaxy did not overlap. Based on individual galaxies

60 60

40 401

Rotational Velocity [km/s]
Rotational Velocity [km/s]
Rotational Velocity [km/s]

Rotational Velocity [km/s]

pm——

= B analysis, they obtained a constraint in the range:

nter, which allevi h re-cus L | e . » . . 24 _22
ST ch alleviates the core-cusp ¥/ I : Lty 2 Lt | ]  There is only one positive evidence to reject each of the NFW, , 2.12 % ,10 < Mppu/ eV<. 2.7 X 19 ,
: = 1.785 - 0.046 ‘ = 0.077
problem. . Ve d=1Te e Xy = 009 ke A b . U Burkert, and SIDM model. and one strong evidence to reject the Based on combined analysis (all of the galaxies are fitted simultaneously), they
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« The mass of FDM particle is currently have not been well constrained. The 20 ff
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simulations have to be done to get a more stringent constraint. UGC08286 Rotation Curve (NFW) UGC08286 Rotation Curve (Burkert) UGC08286 Rotation Curve (FDM) UGC08286 Rotation Curve (SIDM) :
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